Correction: Soil Bacterial Communities Respond to Mowing and Nutrient Addition in a Steppe Ecosystem

نویسندگان

  • Ximei Zhang
  • Quansheng Chen
  • Xingguo Han
چکیده

In many grassland ecosystems, nitrogen (N) and phosphorus (P) are added to improve plant productivity, and the aboveground plant biomass is mowed and stored as hay for the bullamacow. Nutrient addition and mowing affect the biodiversity and ecosystem functioning, and most of the previous studies have primarily focused on their effects on macro-organisms, neglecting the responses of soil microbial communities. In this study, we examined the changes in three community attributes (abundance, richness, and composition) of the entire bacterial kingdom and 16 dominant bacterial phyla/classes in response to mowing, N addition, P addition, and their combinations, by conducting a 5-year experiment in a steppe ecosystem in Inner Mongolia, China. Overall, N addition had a greater effect than mowing and P addition on most of these bacterial groups, as indicated by changes in the abundance, richness and composition in response to these treatments. N addition affected these soil bacterial groups primarily through reducing soil pH and increasing available N content. Meanwhile, the 16 bacterial phyla/classes responded differentially to these experimental treatments, with Acidobacteria, Acidimicrobidae, Deltaproteobacteria, and Gammaproteobacteria being the most sensitive. The changes in the abundance, richness, and composition of various bacterial groups could imply some potential shift in their ecosystem functions. Furthermore, the important role of decreased soil pH caused by N addition in affecting soil bacterial communities suggests the importance of restoring acidified soil to maintain soil bacterial diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil Bacterial Communities Respond to Climate Changes in a Temperate Steppe

Climate warming and shifting precipitation regimes are affecting biodiversity and ecosystem functioning. Most studies have focused on the influence of warming and altered precipitation on macro-organisms, whereas the responses of soil microbial communities have been neglected. We studied the changes in the abundance, richness, and composition of the entire bacterial kingdom and 16 dominant bact...

متن کامل

Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effec...

متن کامل

Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective

Mowing for hay is a widely adopted practice for grasslands utilization and management. However, its effects on energy partitioning have not well been studied. Our primary objective was to examine the role of mowing as a disturbance factor acting on energy partitioning and relationships between community composition/structure and energy fluxes in a typical steppe ecosystem through a long-term fi...

متن کامل

Water Content Differences Have Stronger Effects than Plant Functional Groups on Soil Bacteria in a Steppe Ecosystem

Many investigations across natural and artificial plant diversity gradients have reported that both soil physicochemical factors and plant community composition affect soil microbial communities. To test the effect of plant diversity loss on soil bacterial communities, we conducted a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia (China). We found th...

متن کامل

Effects of Mowing on Methane Uptake in a Semiarid Grassland in Northern China

BACKGROUND Mowing is a widely adopted management practice for the semiarid steppe in China and affects CH(4) exchange. However, the magnitude and the underlying mechanisms for CH(4) uptake in response to mowing remain uncertain. METHODOLOGY/PRINCIPAL FINDINGS In two consecutive growing seasons, we measured the effect of mowing on CH(4) uptake in a steppe community. Vegetation was mowed to 2 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013